Uso das proporções na teoria de alavancas

As alavancas são máquinas simples usadas pela humanidade há milhares de anos. Consistem basicamente em uma barra com um ponto de apoio facilitando o movimento de objetos. Essas máquinas fascinaram um famoso filósofo grego, Arquimedes. Sobre alavancas Arquimedes disse a seguinte frase: “Dê-me um ponto de apoio e uma alavanca que moverei o mundo”. De fato, as alavancas, assim como todas as máquinas, têm como função principal facilitar o trabalho humano. Hoje vemos a aplicação de teoria das alavancas em vários objetos como tesouras, gangorras, aparelhos de academia e outros.

Arquimedes realizou muitos estudos sobre alavancas e criou a teoria das alavancas. Ele percebeu que a força aplicada a uma das extremidades da alavanca, com o intuito de mover um objeto na outra extremidade, é inversamente proporcional à distância do ponto de apoio. Ou seja, quanto mais distante a extremidade estiver do ponto de apoio, menor será a força necessária para mover o objeto. Tente fechar uma porta aplicando a força próximo às dobradiças. Verá que é muito mais difícil que fechar pela maçaneta, pois a força estará sendo aplicada muito próxima ao ponto de apoio.

Não pare agora... Tem mais depois da publicidade ;)

Exemplo. Sob uma das extremidades de uma alavanca está uma pedra com 60 kg de massa localizada a 70 cm do ponto de apoio. A outra extremidade está a 140 cm do ponto de apoio. Determine a força que deve ser aplicada à outra extremidade para que a pedra possa ser movida?

Solução: Como foi dito, a força é inversamente proporcional à distância da extremidade ao ponto de apoio. Para a pedra se mover, o sistema deve estar em equilíbrio. Assim, teremos:


Onde F é força aplicada para mover a pedra; P é o peso da pedra; d1 é a distância da pedra ao ponto de apoio; d2 é a distância da outra extremidade ao ponto de apoio.

Segue que:

P = mg = 60*10 = 600N
d1 = 70 cm
d2 = 140 cm

Assim,

Por Marcelo Rigonatto
Especialista em Estatística e Modelagem Matemática

Publicado por Marcelo Rigonatto

Videoaulas

Artigos Relacionados

Escalas Matemáticas
Estabelecendo distâncias através das escalas de mapas.
Fração mista
Entenda o que é uma fração mista. Aprenda a representar uma fração imprópria como uma fração mista e a converter uma fração mista em uma fração imprópria.
Problemas com frações
fração, o que é uma fração, identificação de uma fração, representação de uma fração, divisão, partes iguais, idéia de fração, leitura de fração, numerador, denominador, problemas que envolvem fração, problemas matematicos, situações problemas.