Regra de Chió nos cálculos dos determinantes
Publicado por Gabriel Alessandro de Oliveira
Artigos Relacionados
Classificando um sistema escalonado
Analisando sistemas lineares escalonados para classificar o sistema quanto ao seu conjunto solução.
Cofator de uma matriz
O cálculo do cofator de uma matriz qualquer auxilia no cálculo do determinante através do teorema de Laplace.
Condições para equivalência de sistemas
Condições para equivalência, uma análise dos coeficientes das equações que compõem o sistema linear. Compreendendo as condições para equivalência de um sistema linear.
Escalonamento de Sistemas
Transformando sistemas em matrizes completas visando técnicas de escalonamento.
Matriz Oposta e Matriz Transposta
Identificando matriz oposta e matriz transposta.
Menor complementar
Entenda o que é o menor complementar ou menor principal de um elemento da matriz. Aprenda a calcular o menor complementar e o cofator de um elemento da matriz.
Teorema de Jacobi
Estudo do determinante de matrizes através do teorema de Jacobi. Compreendendo o teorema de Jacobi para o cálculo do determinante.
Teorema de Laplace
Conheça o teorema de Laplace, use o esse teorema para calcular o determinante de matrizes, aprenda o que é menor complementar e o que é cofator de um elemento da matriz.
Geografia
Fatores locacionais da indústria
Assista à videoaula saiba o que são os fatores locacionais da indústria. Entenda como a atividade industrial considera alguns critérios para seu estabelecimento e evolução. Conheça os fatores locacionais da indústria na atualidade.